Skip to content

19.07.2014

СОЗНАНИЕ — ДОСТУЧАТЬСЯ ДО НЕБЕС

Между сознанием человека и квантовой физикой есть странная связь

Никто не понимает, что такое сознание и как оно работает. Никто не понимает и квантовую механику. Может ли это быть большим, чем просто совпадение? «Я не могу определить реальную проблему, поэтому подозреваю, что реальной проблемы нет, но я не уверен, что нет никакой реальной проблемы». Американский физик Ричард Фейнман сказал это о загадочных парадоксах квантовой механики. Сегодня эту теорию физики используют для описания мельчайших объектов во Вселенной. Но точно так же он мог сказать о запутанной проблеме сознания.

Некоторые ученые думают, что мы уже понимаем сознание или что это просто иллюзия. Но многим другим кажется, что мы вообще даже и близко не подобрались к сути сознания.

Многолетняя головоломка под названием «сознание» даже привела к тому, что некоторые ученые попытались объяснить ее при помощи квантовой физики. Но их усердие было встречено с изрядной долей скепсиса, и это не удивительно: кажется неразумным объяснять одну загадку при помощи другой.

Но такие идеи ни разу не абсурдны и даже не с потолка взялись.

С одной стороны, к великому неудовольствию физиков, разум поначалу отказывается постигать раннюю квантовую теорию. Более того, квантовые компьютеры, по прогнозам, будут способны на такие вещи, на какие не способны обычные компьютеры. Это напоминает нам, что наш мозг до сих пор способен на подвиги, недоступны для искусственного интеллекта. «Квантовое сознание» широко высмеивается как мистическая ерунда, но никто так и не смог ее окончательно развеять.Квантовая механика — лучшая теория, которая у нас есть, способная описать мир на уровне атомов и субатомных частиц. Пожалуй, самой известной из ее загадок является тот факт, что результат квантового эксперимента может меняться в зависимости от того, решаем мы измерить свойства участвующих в нем частиц или нет.

Когда первопроходцы квантовой теории впервые обнаружили этот «эффект наблюдателя», они встревожились не на шутку. Казалось, он подрывает предположение, лежащее в основе всей науки: что где-то там существует объективный мир, независимый от нас. Если мир действительно ведет себя зависимо от того, как — или если — мы смотрим на него, что будет означать «реальность» на самом деле?

Некоторые ученые были вынуждены заключить, что объективность — это иллюзия, и что сознание должно играть активную роль в квантовой теории. Другие же просто не видели в этом никакого здравого смысла. Например, Альберт Эйнштейн был раздосадован: неужели Луна существует, только когда вы на нее смотрите?

Сегодня некоторые физики подозревают, что дело не в том, что сознание влияет на квантовую механику… а в том, что оно вообще появилось, благодаря ей. Они полагают, что квантовая теория может понадобиться нам, чтобы вообще понять, как работает мозг. Может ли быть такое, что как квантовые объекты могут находиться в двух местах одновременно, так и квантовый мозг может одновременно иметь в виду две взаимоисключающие вещи?

Эти идеи вызывают споры. Может оказаться так, что квантовая физика никак не связана с работой сознания. Но они хотя бы демонстрируют, что странная квантовая теория заставляет нас думать о странных вещах.

Лучше всего квантовая механика пробивается в сознание человека через эксперимент с двойной щелью. Представьте себе луч света, который падает на экран с двумя близко расположенными параллельными щелями. Часть света проходит через щели и падает на другой экран.

Можно представить свет в виде волны. Когда волны проходят через две щели, как в эксперименте, они сталкиваются — интерферируют — между собой. Если их пики совпадают, они усиливают друг друга, что выливается в серию черно-белых полос света на втором черном экране.

Этот эксперимент использовался, чтобы показать волновой характер света, больше 200 лет, пока не появилась квантовая теория. Тогда эксперимент с двойной щелью провели с квантовыми частицами — электронами. Это крошечные заряженные частицы, компоненты атома. Непонятным образом, но эти частицы могут вести себя как волны. То есть они подвергаются дифракции, когда поток частиц проходит через две щели, производя интерференционную картину.

Теперь предположим, что квантовые частицы проходят через щели одна за другой и их прибытие на экран тоже будет наблюдаться пошагово. Теперь нет ничего очевидного, что заставляло бы частицу интерферировать на ее пути. Но картина попадания частиц все равно будет демонстрировать интерференционные полосы.

Все указывает на то, что каждая частица одновременно проходит через обе щели и интерферирует сама с собой. Это сочетание двух путей известно как состояние суперпозиции.

Но вот что странно.

Если разместить детектор в одной из щелей или за ней, мы могли бы выяснить, проходит через нее частицы или нет. Но в таком случае интерференция исчезает. Простой факт наблюдения пути частицы — даже если это наблюдение не должно мешать движению частицы — меняет результат.

Физик Паскуаль Йордан, который работал с квантовым гуру Нильсом Бором в Копенгагене в 1920-х годах, сформулировал это так: «Наблюдения не только нарушают то, что должно быть измерено, они это определяют… Мы принуждаем квантовую частицу выбирать определенное положение». Другими словами, Йордан говорит, что «мы сами производим результаты измерений».

Если это так, объективная реальность можно просто выбросить в окно.

Но на этом странности не заканчиваются.

Если природа меняет свое поведение в зависимости от того, смотрим мы или нет, мы могли бы попытаться обвести ее вокруг пальца. Для этого мы могли бы измерить, какой путь выбрала частица, проходя через двойную щель, но только после того, как пройдет через нее. К тому времени она уже должна «определиться», пройти через один путь или через оба.

Провести такой эксперимент в 1970-х годах предложил американский физик Джон Уилер, и в следующие десять лет эксперимент с «отложенным выбором» провели. Он использует умные методы измерения путей квантовых частиц (как правило, частиц света — фотонов) после того, как они выбирают один путь или суперпозицию двух.

Оказалось, что, как и предсказывал Бор, нет никакой разницы, задерживаем мы измерения или нет. До тех пор, пока мы измеряем путь фотона до его попадания и регистрацию в детекторе, интерференции нет. Создается впечатление, что природа «знает» не только когда мы подглядываем, но и когда мы планируем подглядывать.

Всякий раз, когда в этих экспериментах мы открываем путь квантовой частицы, ее облако возможных маршрутов «сжимается» в единое четко определенное состояние. Более того, эксперимент с задержкой предполагает, что сам акт наблюдения, без какого-либо физического вмешательства, вызванного измерением, может стать причиной коллапса. Значит ли это, что истинный коллапс происходит только тогда, когда результат измерения достигает нашего сознания?

Такую возможность предложил в 1930-х годах венгерский физик Юджин Вигнер. «Из этого следует, что квантовое описание объектов находится под влиянием впечатлений, поступающих в мое сознание», писал он. «Солипсизм может быть логически согласованным с квантовой механикой».

Уилера даже забавляла мысль о том, что наличие живых существ, способных «наблюдать», преобразовала то, что ранее было множество возможных квантовых прошлых, в одну конкретную историю. В этом смысле, говорит Уилер, мы становимся участниками эволюции Вселенной с самого ее начала. По его словам, мы живем в «соучастной вселенной».

Физики до сих пор не могут выбрать лучшую интерпретацию этих квантовых экспериментов, и в некоторой степени право этого предоставляется и вам. Но, так или иначе, подтекст очевиден: сознание и квантовая механика каким-то образом связаны.

Начиная с 1980-х годов, английский физик Роджер Пенроуз предположил, что эта связь может работать в другом направлении. Он сказал, что независимо от того, влияет сознание на квантовую механику или нет, возможно, квантовая механика участвует в сознании.

И еще Пенроуз спросил: что, если в нашем мозге существуют молекулярные структуры, способные менять свое состояние в ответ на одно квантовое событие? Могут ли эти структуры принимать состояние суперпозиции, подобно частицам в эксперименте с двойной щелью? Могут ли эти квантовые суперпозиции затем проявляться в том, как нейроны сообщаются посредством электрических сигналов?

Может быть, говорил Пенроуз, наша способность поддерживать, казалось бы, несовместимые психические состояния не причуда восприятия, а реальный квантовый эффект?

В конце концов, человеческий мозг, похоже, в состоянии обрабатывать когнитивные процессы, которые до сих пор по возможностям намного превосходят цифровые вычислительные машины. Возможно, мы даже способны выполнять вычислительные задачи, которые нельзя исполнить на обычные компьютерах, использующих классическую цифровую логику.

Пенроуз впервые предположил, что квантовые эффекты присутствуют в человеческом сознании, в книге 1989 года ‘The Emperor’s New Mind’. Главной его идеей стала «оркестрованная объективная редукция». Объективная редукция, по мнению Пенроуза, означает, что коллапс квантовой интерференции и суперпозиции является реальным физическим процессом, будто лопающийся пузырь.

Оркестрованная объективная редукция опирается на предположение Пенроуза о том, что гравитация, которая влияет на повседневные объекты, стулья или планеты, не демонстрирует квантовых эффектов. Пенроуз полагает, что квантовая суперпозиция становится невозможной для объектов больше атомов, потому что их гравитационное воздействие в таком случае привело бы к существованию двух несовместимых версий пространства-времени.

Дальше Пенроуз развивал эту идею с американским врачом Стюартом Хамероффом. В своей книге «Тени разума» (1994) он предположил, что структуры, участвующие в этом квантовом познании, могут быть белковыми нитями — микротрубочками. Они имеются в большинстве наших клеток, в том числе и нейронах мозга. Пенроуз и Хамерофф утверждали, что в процесс колебания микротрубочки могут принимать состояние квантовой суперпозиции.

Но нет ничего в поддержку того, что это вообще возможно.

Предполагали, что идею квантовых суперпозиций в микротрубочках поддержат эксперименты, предложенные в 2013 году, но на деле в этих исследованиях не упоминалось о квантовых эффектах. Кроме того, большинство исследователей считают, что идея оркестрованных объективных редукций была развенчана исследованием, опубликованным в 2000 году. Физик Макс Тегмарк рассчитал, что квантовые суперпозиции молекул, вовлеченных в нейронные сигналы, не смогут просуществовать даже мгновения времени, необходимого для передачи сигнала.

Квантовые эффекты, включая суперпозицию, очень хрупкие и разрушаются в процессе так называемой декогеренции. Это процесс обусловлен взаимодействиями квантового объекта с окружающей его средой, поскольку его «квантовость» утекает.

Декогеренция, как полагали, должна протекать чрезвычайно быстро в теплых и влажных средах, таких как живые клетки.

Нервные сигналы — это электрические импульсы, вызванные прохождением электрически заряженных атомов через стенки нервных клеток. Если один из таких атомов был в суперпозиции, а затем столкнулся с нейроном, Тегмарк показал, что суперпозиция должна распадаться менее чем за одну миллиардную миллиардной доли секунды. Чтобы нейрон выпустил сигнал, ему нужно в десять тысяч триллионов раз больше времени.

Именно поэтому идеи о квантовых эффектах в головном мозге не проходят проверку скептиков.

Но Пенроуз неумолимо настаивает на гипотезе ООР. И невзирая на предсказание сверхбыстрой декогеренции Тегмарка в клетках, другие ученые нашли проявления квантовых эффектов у живых существ. Некоторые утверждают, что квантовая механика используется перелетными птицами, которые используют магнитную навигацию, и зелеными растениями, когда они используют солнечный свет для производства сахара в процессе фотосинтеза.

При всем этом идея того, что мозг может использовать квантовые трюки, отказывается уходить насовсем. Потому что в ее пользу